Live imaging of neuroblast lineages within intact larval brains in Drosophila.
نویسندگان
چکیده
Neuroblasts are the precursors of the Drosophila central nervous system and undergo repeated physical and molecular asymmetric cell divisions. Live imaging of neuroblast lineages within intact Drosophila larval brains has dramatically improved our current understanding of basic cellular processes such as the establishment of cell polarity, spindle orientation, and cytokinesis. The analysis of mutant phenotypes using live imaging can enlarge our understanding of asymmetric neuroblast division and self-renewal. Although much live neuroblast imaging is performed using green fluorescent protein only, the generation of improved fluorescent proteins has led to an increase in the use of two-color imaging. Here we present a simple protocol for isolating and imaging larval brain neuroblasts. We describe procedures for the dissection and mounting of brains from third-instar Drosophila larvae in explant solution and their subsequent live imaging. The method provides a close approximation to the in vivo environment and produces data with high temporal and spatial resolutions. We also discuss potential problems and pitfalls and provide examples of how this technique is used.
منابع مشابه
Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts.
The Drosophila brain is formed by an invariant set of lineages, each of which is derived from a unique neural stem cell (neuroblast) and forms a genetic and structural unit of the brain. The task of reconstructing brain circuitry at the level of individual neurons can be made significantly easier by assigning neurons to their respective lineages. In this article we address the automation of neu...
متن کاملLis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts.
Mitotic spindle orientation in polarized cells determines whether they divide symmetrically or asymmetrically. Moreover, regulated spindle orientation may be important for embryonic development, stem cell biology, and tumor growth. Drosophila neuroblasts align their spindle along an apical/basal cortical polarity axis to self-renew an apical neuroblast and generate a basal differentiating cell....
متن کاملLive imaging of Drosophila larval neuroblasts.
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once ...
متن کاملThe labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain
The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the...
متن کاملProtein phosphatase 2A regulates self-renewal of Drosophila neural stem cells.
Drosophila larval brain neural stem cells, also known as neuroblasts, divide asymmetrically to generate a self-renewing neuroblast and a ganglion mother cell (GMC) that divides terminally to produce two differentiated neurons or glia. Failure of asymmetric cell division can result in hyperproliferation of neuroblasts, a phenotype resembling brain tumors. Here we have identified Drosophila Prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cold Spring Harbor protocols
دوره 2013 10 شماره
صفحات -
تاریخ انتشار 2013